CIRCLES

Circles have special properties. The fact that they can roll smoothly is because the circle has a constant **diameter** (the distance across the circle that passes through the center). A vehicle with square wheels would cause it to bump up and down because, since the diagonals of a square are longer then its width, it does not have a constant diameter. But a circle is not the only shape with a constant diameter. Reuleaux curves, which resemble rounded polygons, also have a constant diameter. It may not appear to be the case, but Reuleaux curves roll smoothly without bumping up and down. See problem 7-3 in the textbook for a picture.

A circle does not include its interior. It is the set of points on a flat surface at a fixed distance (the radius) from a fixed point (the center). This also means that the center, diameters, and radii (plural of radius) are not part of the circle. Remember, a radius is half of a diameter, and connects the center of the circle to a point on the circle. A circle has infinitely many diameters and infinitely many radii.

See the Math Notes box in Lesson 7.1.2.

Example 1

Using the circle at right, write an equation and solve for \(x \).

Note: Each part is a different problem.

a. \(AO = 3x - 4, \ OB = 4x - 12 \).

b. \(OB = 2x - 5, \ AC = x - 7 \)

Using the information we have about circles, diameters, and radii, we can write an equation using the expressions in part (a), then solve for \(x \). \(AO \) and \(OB \) are both radii of circle \(O \), which means that they are equal in length.

In part (b), \(OB \) is a radius, but \(AC \) is a diameter, so \(AC \) is twice as long as \(OB \).

\[
AO = OB \\
3x - 4 = 4x - 12 \\
8 = x
\]

Subtract 3x and add 12 on both sides.

\[
2(\text{OB}) = \text{AC} \\
2(2x - 5) = x - 7 \\
4x - 10 = x - 7 \\
3x = 3 \\
x = 1
\]
Problems

Using the circle below, write an equation and solve for x. Note: Each part is a different problem.

1. $OP = 5x - 3, \ OR = 3x + 9$
2. $OQ = 2x + 12, \ OP = 3x - 1$
3. $OR = 12x - 8, \ OQ = 8x - 4$
4. $OP = 5x + 3, \ PR = 3x + 13$
5. $OQ = x - 6, \ PR = x + 7$

Answers

1. $x = 6$
2. $x = 13$
3. $x = 1$
4. $x = 1$
5. $x = 19$