TRANSFORMING FUNCTIONS

In Lesson 10.2.1, students transform functions by adding “k” to a given function \(f(x) \). If the original function is \(f(x) \), then the transformed function \(f(x) + k \) is a vertical shift of the original function by \(k \) units. If \(k \) is positive, then the function is shifted upward. If \(k \) is negative, then the function is shifted downward.

Example 1

\(f(x) = 2x \)
Graph \(f(x) + 3 \).

Start by making a table for \(f(x) \).

Add a column to the table for \(f(x) + 3 \).

Note that \(f(x) \) can be thought of as \(y \), so when completing the table for \(f(x) + 3 \), think of it as \(y + 3 \).

Graph \(f(x) \) and \(f(x) + 3 \) on the same set of axes.

In the graph at right, \(f(x) \) is graphed with a dashed line and \(f(x) + 3 \) is graphed with a solid line.

Example 2

\(f(x) = \left(\frac{1}{2}\right)^x \)
Graph \(f(x) - 4 \).

Make a table similar to the one made in the previous example.

Graph \(f(x) \) and \(f(x) - 4 \) on the same set of axes.

In the graph at right, \(f(x) \) is graphed with a dashed curve and \(f(x) - 4 \) is graphed with a solid curve.
Problems

Graph the original function and the transformed function on the same set of axes.

1. \(f(x) = -2x \)
2. \(f(x) = \frac{3}{4}x \)
3. \(f(x) = 2^x \)
4. \(f(x) = \left(\frac{2}{3}\right)^x \)

\(f(x) + 3 \)
\(f(x) - 1 \)
\(f(x) + 1 \)
\(f(x) - 5 \)

Explain how each transformation is different from \(f(x) \).

5. \(f(x) - 8 \)
6. \(f(x) - 50 \)
7. \(f(x) + 31 \)
8. \(f(x) + 36 \)

Given the graph of \(f(x) \) at right, graph each transformation.

9. \(f(x) - 4 \)
10. \(f(x) + 2 \)

Answers

In answer graphs for problems 1 through 4, the original function is graphed using a dotted line or curve and the transformed function is graphed using a solid line or curve.

5. Shifted down 8 units.
6. Shifted down 50 units.
7. Shifted up 31 units.
8. Shifted up 36 units.
9 and 10.