ARITHMETIC OPERATIONS WITH FUNCTIONS

In Lesson 10.2.2, students combine functions using addition and subtraction. This is done in the context of different situations.

Example 1

Thomas has $750 saved and earns $228 each day at work, all of which goes into his bank account. Thomas spends $133 each week.

Write one equation \(B(x) \) for the amount of money Thomas has in his bank account after \(x \) weeks. Write another equation \(S(x) \) for the amount of money Thomas has spent after \(x \) weeks. Then combine the equations to create a function for the amount of money Thomas has left after \(x \) weeks.

Solution: \(B(x) = 228x + 750 \) \(S(x) = 133x \)

Since Thomas is saving money in the bank, but then spending it, we need to subtract the amount he spends from the amount he has in the bank.

\[B(x) – S(x) = (228x + 750) – (133x) \text{ or } B(x) – S(x) = 95x + 750 \]

Example 2

Javier and Earnest are raking leaves for a neighbor with a large yard and lots of trees. Javier can rake 2.5 bags of leaves per hour and at noon has raked 7 bags of leaves. Earnest can rake 3 bags of leaves per hour, but he arrived late this morning and only has 2 bags of leaves raked at noon.

Write one equation \(J(x) \) for the number of bags of leaves Javier has raked \(x \) hours after noon. Write another equation \(E(x) \) for the number of bags of leaves Earnest has raked \(x \) hours after noon. Then combine the equations to create a function for the total number of bags of leaves they have raked together \(x \) hours after noon.

Solution: \(J(x) = 2.5x + 7 \) \(E(x) = 3x + 2 \)

Since Javier and Earnest are working together, we need to add their equations to write a function for the total number of bags of leaves rakes.

\[J(x) + E(x) = (2.5x + 7) + (3x + 2) \text{ or } J(x) + E(x) = 5.5x + 9 \]
Problems

1. Rex owns a business. It currently costs him $2000 per month to operate his business, but the operational costs are increasing by $10 each month. Rex’s business currently makes a revenue of $3000 per month and the revenue is increasing by $35 each month.

Write one equation for the amount it costs Rex to run his business, another equation for the revenue that his business earns, and a combined equation to model the profit Rex’s business makes after m months.

2. Randy owns two plots of land on which he grows and sells trees. In Plot A there are 982 trees and Randy sells 5 of these trees each day. In Plot B there are 35 trees and Randy plants 4 trees per day.

If $d =$ the number of days that have passed, write one equation for the number of trees in Plot A, another equation for the number of trees in Plot B, and a combined equation for the total number of trees on Randy’s two plots.

For problems 3 through 8, write an equation for the combined functions given the functions below.

\[f(x) = -4x - 7 \]
\[g(x) = 3^x + 6 \]
\[h(x) = -7x + 6 \]

3. \[g(x) - h(x) \]
4. \[f(x) + g(x) \]
5. \[g(x) + h(x) \]
6. \[h(x) - g(x) \]
7. \[f(x) - g(x) \]
8. \[f(x) + h(x) \]

Answers

1. \[C(m) = 10m + 2000 \quad R(m) = 35m + 3000 \]
 \[P(m) = R(m) - C(m) = (35m + 3000) - (10m + 2000) = 25m + 1000 \]
2. \[A(d) = -5d + 982 \quad B(d) = 4d + 35 \]
 \[T(d) = A(d) + B(d) = (-5d + 982) + (4d + 35) = -1d + 1017 \]
3. \[g(x) - h(x) = (3^x + 6) - (-7x + 6) = 3^x + 7x \]
4. \[f(x) + g(x) = (-4x - 7) + (3^x + 6) = 3^x - 4x - 1 \]
5. \[g(x) + h(x) = (3^x + 6) + (-7x + 6) = 3^x - 7x + 12 \]
6. \[h(x) - g(x) = (-7x + 6) - (3^x + 6) = -7x - 3^x \]
7. \[f(x) - g(x) = (-4x - 7) - (3^x + 6) = -3^x - 4x - 13 \]
8. \[f(x) + h(x) = (-4x - 7) + (-7x + 6) = -11x - 1 \]