CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS

Date:
Lesson:
Learning Log Title:

<table>
<thead>
<tr>
<th>Date:</th>
<th>Learning Log Title:</th>
<th>Lesson:</th>
</tr>
</thead>
</table>

MATH NOTES

MEASURES OF CENTRAL TENDENCY

Numbers that locate or approximate the “center” of a set of data are called the **measures of central tendency**. The mean and the median are measures of central tendency.

The **mean** is the arithmetic average of the data set. One way to compute the mean is to add the data elements and then to divide the sum by the number of items of data. The mean is generally the best measure of central tendency to use when the set of data does not contain **outliers** (numbers that are much larger or smaller than most of the others). This means that the data is symmetric and not skewed.

The **median** is the middle number in a set of data arranged numerically. If there is an even number of values, the median is the average (mean) of the two middle numbers. The median is more accurate than the mean as a measure of central tendency when there are outliers in the data set or when the data is either not symmetric or skewed.

When dealing with measures of central tendency, it is often useful to consider the distribution of the data. For symmetric distributions with no outliers, the mean can represent the middle, or “typical” value, of the data well. However, in the presence of outliers or non-symmetrical distributions, the median may be a better measure.

Examples: Suppose the following data set represents the number of home runs hit by the best seven player's on a Major League Baseball team:

16, 26, 21, 9, 13, 15, 9

The mean is \[\frac{16 + 26 + 21 + 9 + 13 + 15 + 9}{7} = \frac{109}{7} = 15.57 \].

The median is 15, since, when arranged in order (9, 9, 13, 15, 16, 21, 26), the middle number is 15.
MEAN ABSOLUTE DEVIATION

One method for measuring the spread (variability) in a set of data is to calculate the average distance each data point is from the mean. This distance is called the mean absolute deviation. Since the calculation is based on the mean, it is best to use this measure of spread when the distribution is symmetric.

For example, the points shown below left are not spread very far from the mean. There is not a lot of variability. The points have a small average distance from the mean, and therefore a small mean absolute deviation.

The points above right are spread far from the mean. There is more variability. They have a large average distance from the mean, and therefore a large mean absolute deviation.

QUARTILES AND INTERQUARTILE RANGE (IQR)

Quartiles are points that divide a data set into four equal parts (and thus, the use of the prefix “quar” as in “quarter”). One of these points is the median, since it marks the middle of the data set. In addition, there are two other quartiles in the middle of the lower and upper halves: the first quartile and the third quartile.

Suppose you have this data set: 22, 43, 14, 7, 2, 32, 9, 36, and 12.

To find quartiles, the data set must be placed in order from smallest to largest. Then divide the data set into two halves by finding the median of the entire data set. Next, find the median of the lower and upper halves of the data set. (Note that if there is an odd number of data values, the median is not included in either half of the data set.) See the example below.

Along with range and mean absolute deviation, the interquartile range (IQR) is a way to measure the spread of the data. Statisticians often prefer using the IQR to measure spread because it is not affected much by outliers or non-symmetrical distributions. The IQR is the range of the middle 50% of the data. It is calculated by subtracting the first quartile from the third quartile. In this case, the IQR is 34 – 8, or IQR = 26.
Box Plots

A box plot (also known as a “box-and-whiskers” plot) displays a summary of data using the median, quartiles, and extremes of the data. The box contains “the middle half” of the data. The right segment represents the top 25% of the data, and the left segment represents the bottom 25% of the data. A box plot makes it easy to see where the data are spread out and where they are concentrated. The larger the box, the more the data are spread out.

To construct a box plot using a number line that shows the range of the data, draw vertical line segments above the median, first quartile and third quartile. Then connect the lines from the first and third quartiles to form a rectangle. Place a vertical line segment above the number line at the maximum (highest) and minimum (lowest) data values. Connect the minimum value to the first quartile and the maximum value to the third quartile using horizontal segments. For the data set used in the Quartile Math Note, namely, 2, 7, 9, 12, 14, 22, 32, 36, and 43, the box plot is shown below.

Distance, Rate, and Time

Distance \((d) \) equals the product of the rate (or speed) \((r) \) and the time \((t) \). This is usually written as \(d = r \cdot t \). The units of distance (such as feet or miles) and units of time (such as seconds or hours) are used to write the units of rate (feet per second or miles per hour). The equation can also be written in the equivalent forms of \(r = \frac{d}{t} \) and \(t = \frac{d}{r} \).

One way to make sense of this relationship is to treat rate as a unit rate that equals the distance covered in one hour (or minute) of travel. Then \(r \cdot t \) is \(t \) sets of \(r \) lengths, which is \(rt \) long. For example, if someone travels for 3 hours at 5 miles per hour, you could represent this situation by the diagram below.

You can also use the same equation to find either rate or time if you know the other two variables. For example, if you need to travel 200 miles and need to be there in 4 hours, you have the equation \(r \cdot \frac{\text{mi}}{\text{hr}} = \frac{200 \text{ mi}}{4 \text{ hrs}} \), so \(r = 50 \frac{\text{mi}}{\text{hr}} \).
When you need to compare quantities, it is often helpful to write them using the same units. Here are some common units of measurement and their relationships:

<table>
<thead>
<tr>
<th>Length</th>
<th>Volume</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 inches = 1 foot</td>
<td>8 ounces = 1 cup</td>
<td>16 ounces = 1 pound</td>
</tr>
<tr>
<td>36 inches = 1 yard</td>
<td>16 ounces = 1 pint</td>
<td>2000 pounds = 1 ton</td>
</tr>
<tr>
<td>3 feet = 1 yard</td>
<td>2 pints = 1 quart</td>
<td></td>
</tr>
<tr>
<td>5280 feet = 1 mile</td>
<td>4 quarts = 1 gallon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds = 1 minute</td>
</tr>
<tr>
<td>60 minutes = 1 hour</td>
</tr>
<tr>
<td>24 hours = 1 day</td>
</tr>
<tr>
<td>7 days = 1 week</td>
</tr>
</tbody>
</table>

One year is closely approximated as 365.25 days, or a bit more than 52 weeks and 1 day. Two commonly used approximations based on these figures are:

365 days = 1 year
52 weeks = 1 year