Parametrically-Defined Functions Checkpoint
Problem 12-136

In a set of parametric equations, the parameter, generally \(t \), is the independent variable. Instead of \(y \) being a direct function of \(x \), in a set of parametric equations, \(x \) and \(y \) are both functions of the parameter, \(t \). Therefore the notation \(x(t) \) and \(y(t) \) is often used (where \(x(t) \) represents “\(x \) of \(t \),” not multiplication). Typically, parametric equations allow two related motions (generally horizontal and vertical) to be expressed separately with respect to time and then combined to create a single graph. In order to make the symbols appear less complicated while working with parametric equations, \(x(t) \) can be expressed as \(x \) and \(y(t) \) as \(y \).

Example 1: Graph \(x(t) = 3t - 1 \), \(y(t) = t + 5 \) for \(0 \leq t \leq 5 \). Label the \(t \)-values at each integer-valued point.

Solution: Begin by making a table with columns for \(t \), \(x \), and \(y \). Remember that in this table, \(t \) is the independent variable. Each \(x \)-value is calculated by substituting the given value of \(t \) into \(x = 3t - 1 \), and each \(y \)-value is calculated by substituting into \(y = t + 5 \).

Despite the \(x \)- and \(y \)-coordinates being calculated separately, they are combined to create the points on the graph. Plot and connect the points (-1, 5), (2, 6), (5, 7), (8, 8), (11, 9), and (14, 10), and label each point with its corresponding \(t \)-value. See graph at right.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3(0) - 1 = -1</td>
<td>(0) + 5 = 5</td>
</tr>
<tr>
<td>1</td>
<td>3(1) - 1 = 2</td>
<td>(1) + 5 = 6</td>
</tr>
<tr>
<td>2</td>
<td>3(2) - 1 = 5</td>
<td>(2) + 5 = 7</td>
</tr>
<tr>
<td>3</td>
<td>3(3) - 1 = 8</td>
<td>(3) + 5 = 8</td>
</tr>
<tr>
<td>4</td>
<td>3(4) - 1 = 11</td>
<td>(4) + 5 = 9</td>
</tr>
<tr>
<td>5</td>
<td>3(5) - 1 = 14</td>
<td>(5) + 5 = 10</td>
</tr>
</tbody>
</table>

Example 2: Rewrite \(x(t) = 3t - 1 \), \(y(t) = 6t + 5 \) in rectangular form.

Solution: To write as set of parametric equations as a single equation containing only \(x \) and \(y \), first solve one of the parametric equations for \(t \). In order to make the symbols appear less complicated during the solving process, it is okay to write \(x(t) \) as \(x \) and \(y(t) \) as \(y \).

Solving \(x = 3t - 1 \) for \(t \) gives the equation \(t = \frac{x + 1}{3} \). The expression \(\frac{x + 1}{3} \) can be substituted for \(t \) in the equation \(y = 6t + 5 \). The resulting equation is \(y = 6 \left(\frac{x + 1}{3} \right) + 5 \), which simplifies as \(y = 2x + 7 \).

Example 3: Rewrite \(x(t) = \log(t) \), \(y(t) = (\log(t))^3 \) in rectangular form.

Solution: In this example, it is not necessary to first solve one of the equations for \(t \) and then substitute. A more efficient method for this problem is to substitute \(x = \log(t) \) into the \(y \) equation.

\[
\begin{align*}
y &= (\log(t))^3 \\
y &= x^3
\end{align*}
\]
Now we can go back and solve problem 12-136.

a. Graph \(x(t) = t^2 + 3 \), \(y(t) = 2t - 1 \) for \(-3 \leq t \leq 3\).

Solution: Create a table like the one at right.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x(t) = t^2 + 3)</th>
<th>(y(t) = 2t - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>((-3)^2 + 3 = 12)</td>
<td>(2(-3) - 1 = -7)</td>
</tr>
<tr>
<td>-2</td>
<td>((-2)^2 + 3 = 7)</td>
<td>(2(-2) - 1 = -5)</td>
</tr>
<tr>
<td>-1</td>
<td>((-1)^2 + 3 = 4)</td>
<td>(2(-1) - 1 = -3)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((1)^2 + 3 = 4)</td>
<td>(2(1) - 1 = 1)</td>
</tr>
<tr>
<td>2</td>
<td>((2)^2 + 3 = 7)</td>
<td>(2(2) - 1 = 3)</td>
</tr>
<tr>
<td>3</td>
<td>((3)^2 + 3 = 12)</td>
<td>(2(3) - 1 = 5)</td>
</tr>
</tbody>
</table>

Plotting the points \((12, -7), (7, -5), (4, -3)\), etc. creates the curve shown at right.

b. Rewrite the parametrically-defined function in part (a) in rectangular form.

\(y(t) = 2t - 1 \) can be written as \(y = 2t - 1 \).

Solving for \(t \) gives the equation \(t = \frac{y+1}{2} \). Then substitute \(\frac{y+1}{2} \) for \(t \) in the equation \(x = t^2 + 3 \).

\[
x = \left(\frac{y+1}{2} \right)^2 + 3
\]

\[
x = \frac{(y+1)^2}{4} + 3
\]

\[
x - 3 = \frac{1}{4} (y + 1)^2
\]
Here are some more to try.

Graph the following parametrically-defined functions.

1. \(x(t) = \frac{t}{2}, \ y(t) = t^2 - 5 \) for \(-4 \leq t \leq 4\)
2. \(x(t) = t^2 + 2, \ y(t) = t^2 - 3 \) for \(-3 \leq t \leq 3\)

Rewrite the parametrically-defined functions in rectangular form.

3. \(x(t) = t + 7, \ y(t) = 4t - 1 \)
4. \(x(t) = \frac{t - 5}{3}, \ y(t) = t^2 \)
5. \(x(t) = t^7, \ y(t) = 8t^7 + 3 \)
6. \(x(t) = t^5, \ y(t) = -t^{10} \)
7. \(x(t) = t^3, \ y(t) = t - 4 \)
8. \(x(t) = e^t, \ y(t) = 6e^{4t} \)
9. \(x(t) = t^7, \ y(t) = 0.5t^{35} + 1 \)
10. \(x(t) = t^2 - 3, \ y(t) = t^2 + 9 \)

Answers:

1. \[
\begin{align*}
 &\begin{array}{c}
 t = -4 \\
 t = -3 \\
 t = -2 \\
 t = -1 \\
 t = 0 \\
 t = 1 \\
 t = 2 \\
 t = 3 \\
 \end{array} \\
 &\begin{array}{c}
 y = 12 \\
 y = 8 \\
 y = 4 \\
 y = 2 \\
 \end{array} \\
\end{align*}
\]

3. \(y = 4x - 29 \)
4. \(y = (3x + 5)^2 \) or \(y = 9x^2 + 30x + 25 \)
5. \(y = 8x + 3 \)
6. \(y = -x^2 \)
7. \(x = (y + 4)^3 \) or \(y = \sqrt[3]{x} - 4 \)
8. \(y = 6x^4 \)
9. \(y = 0.5x^5 + 1 \)
10. \(y = x + 12 \)