2. Function Notation

Functions are often given names, like “f,” “g,” or “h.” The notation \(f(x) \) represents the output of a function named \(f \) when \(x \) is the input. It is pronounced “\(f \) of \(x \).” The notation \(g(2) \), pronounced “\(g \) of 2,” represents the output of function \(g \) when \(x = 2 \).

Substitution can be used to evaluate a function given in function notation. For example, if \(g(x) = 2(x + 3)^2 \), then:

\[
g(-5) = 2(-5 + 3)^2 = 2(-2)^2 = 8 \\
g(a + 1) = 2((a + 1) + 3)^2 = 2(a + 4)^2 = 2(a^2 + 8a + 16) = 2a^2 + 16a + 32
\]

Solution to problem 2-70:

Let \(f(x) = 4x + 7 \) and \(g(x) = x^2 - 3 \).

a. \(f(12) - g(2) = \\
(4(12) + 7) - (2^2 - 3) = \\
55 - 1 = 54 \\
b. \(g(f(-1)) = \\
g(4(-1) + 7) = \\
g(3) = (3)^2 - 3 = 6 \\
c. \(f(w + 2) = \\
4(w + 2) + 7 = \\
4w + 8 + 7 = 4w + 15 \\
d. \(g(k + 5) = \\
(k + 5)^2 - 3 = \\
k^2 + 10k + 25 - 3 = k^2 + 10k + 22 \\

Determine each of the following values or expressions.

1. \(f(x) = 3x^2 + 5 \); evaluate \(f(4) \).
2. \(g(x) = 5x^3 + 3x^2 \); evaluate \(g(-3) \).
3. \(h(x) = 16 \cdot 3^x \); evaluate \(h(2) \).
4. \(f(x) = 5 \cdot 2^{3x} \); evaluate \(f(-1) \).
5. \(g(x) = -9x^2 - 2x \); evaluate \(g(m - 4) \).
6. \(h(x) = 5x^2 + 3x \); evaluate \(h(x + a) \).
7. \(f(x) = -x^2 + 15x \); evaluate \(f(2h) \).
8. \(j(x) = 3x^2 + 5x \) and \(f(x) = 2x^2 - 2x + 3 \); evaluate \(j(f(1)) \).
9. \(f(x) = 6x^3 + 7 \) and \(g(x) = 3^x \); evaluate \(f(g(-2)) \).
10. \(h(x) = 3x^2 - 4x - 5 \) and \(m(x) = x^2 + x + 1 \); evaluate \(m(h(3)) \).
11. \(n(x) = 5x^2 + 5x + 5 \) and \(d(x) = 4x + 4 \); evaluate \(n(d(x)) \).
12. \(f(x) = 7x + 6 \); evaluate \(f(f(x)) \).
Answers

1. 53 2. –108
3. 944,784 4. \(\frac{5}{8} \)
5. \(-9m^2 + 70m - 136\) 6. \(5x^2 + 10xa + 5a^2 + 3x + 3a\)
7. \(-4h^2 + 30h\) 8. 42
9. \(7 \frac{2}{243}\) 10. 111
11. \(80x^2 + 180x + 105\) 12. \(49x + 48\)