16. Logarithms

Example 1: Write as a sum or difference of multiples of logarithms: \(\log_b \sqrt[3]{x^2 y^3} \)

Solution: Use log properties to break down expression.

Quotient Rule: \(\log_b \frac{\sqrt{x}}{y^3} \)

Power Rule: \(\frac{1}{2} \log_b x - 3 \log_b y \)

Example 2: Solve: \(\ln(x + 3) - \ln(x - 2) = \ln 4 \)

Solution: Use quotient rule to combine terms. \(\ln \frac{x+3}{x-2} = \ln 4 \)

Take \(e^x \) on both sides. \(\frac{x+3}{x-2} = 4 \)

Solve the expression. \(x + 3 = 4x - 8 \)

\(11 = 3x \)

\(x = \frac{11}{3} \)

Make sure the solution is in the domain of the expression. In this case the domain is \(x > 2 \). Since \(\frac{11}{3} > 2 \), it is a valid solution.

Write each expression as a sum or difference of multiples of logarithms.

1. \(\log_b x^2 y^3 \)
2. \(\log_b \frac{x^9}{y^7} \)
3. \(\log_b \frac{\sqrt[5]{x^6}}{x^2} \)
4. \(\ln \frac{x^3 y^2}{\sqrt[3]{c}} \)
5. \(\ln \frac{\sqrt[3]{x^4 + 3}}{x^5} \)
6. \(\ln \frac{1}{\sqrt[3]{6x^2 - 7x - 3}} \)

Write each expression as a single logarithm.

7. \(\log_5 \frac{5}{7} + \log_5 \frac{40}{22} \)
8. \(\log_2 \frac{32}{11} + \log_2 \frac{121}{16} - \log_2 \frac{4}{5} \)
9. \(\ln \left(4x^2 - 9 \right) - \ln \left(8x^3 - 27 \right) \)
10. \(3 \ln \frac{a^2 b}{c^2} + 2 \ln \frac{b^2 c}{a^4} + 2 \ln \frac{abc}{2} \)

Solve each equation without using a calculator.

11. \(\log_3 (x + 1) = 2 \)
12. \(\log_5 (5x - 1) = -2 \)
13. \(\log_2 2x = \log_3 (x + 1) \)
14. \(\ln x + \ln (x - 2) = \ln (x + 4) \)
15. \(2 \ln (x + 1) - \ln (x + 4) = \ln (x - 1) \)
16. \(\log_4 x + \log_4 (6x + 10) = 1 \)